1	(i)	(B)	$\begin{aligned} & \mathrm{P}(\text { Exactly } 20 \text { cured })=\binom{20}{20} \times 0.78^{20} \times 0.22^{0}=0.0069 \\ & \mathrm{P}(\text { At most } 18 \text { cured })=1-(0.0069+0.0392) \\ & =0.954 \end{aligned}$	M1 M1 A1 [3]	For 0.78^{20} oe For $\mathrm{P}(19)+\mathrm{P}(20)$ CAO	Allow M2 for 0.9488 for linear interpolation from tables or M1 for 1 $-0.9918=0.0082$ and second M1 for correct FT using answer to (i)(A) Zero for use of $p=0.8$ here Not necessarily correct, but both attempts at binomial, including coefficient in (i) and no extra terms (such as $\mathrm{P}(X=18)$) Condone use of $p=0.8$ Allow 0.95 with working
	(i)	(C)	$\mathrm{E}(X)=n p=20 \times 0.78=15.6$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	CAO	Do not allow final answer of 15 or 16 even if correct 15.6 given earlier
	(ii)		Let $X \sim \mathrm{~B}(20,0.78)$ Let $p=$ probability of a patient being cured (for population) $\begin{aligned} & \mathrm{H}_{0}: p=0.78 \\ & \mathrm{H}_{1}: p>0.78 \end{aligned}$	B1 B1 B1	For definition of p For H_{0} For H_{1}	In context See below for additional notes No further marks if point probabilities

			$\mathrm{P}(X \geq 19)=0.0392+0.0069$ $=0.0461$ $0.0461>1 \%$ So not significant. Conclude that there is not enough evidence to suggest that the new drug is more effective than the old one.	B B1* M1* dep A1 E1 [8]	For NOTATION $\mathrm{P}(X$ ≥ 19) or $\mathrm{P}(X>18)$ or $1-\mathrm{P}(\mathrm{X} \leq 18)$ or 1- $\mathrm{P}(\mathrm{X}<19)$ CAO For 0.0461 allow 0.0462 For comparison with 1%	used Notation $\mathrm{P}(X=19)$ scores B0. If they have the correct $\mathrm{P}(X \geq 19)$ then give B 1 and ignore any further incorrect notation. FT answer to (i)B for following three marks provided based on $1-(\mathrm{P}(19)+$ P(20)) Dep on sensible attempt at $\mathrm{P}(X \geq 19)$ Allow 'accept H_{0} ' or 'reject H_{1} ' Must include 'insufficient evidence' or something similar such as 'to suggest that' ie an element of doubt either in the A or E mark. Must be in context to gain E1 mark. Do NOT allow 'sufficient evidence to suggest proportion cured is 0.78^{\prime} or similar 99\% method: $\mathrm{P}(\mathrm{X} \leq 18)=0.9539 \mathrm{~B} 1 \mathrm{~B} 1 * \mathrm{CAO}$ $0.9539<99 \%$ M1* then as per scheme
			ALTERNATIVE METHOD FOR FINAL 5 MARKS $\mathrm{P}(X \geq 19)=0.0461>1 \%$	B1	If combination of methods used, mark both and give higher mark. For either probability	No further marks if point probabilities used Do not insist on correct notation as candidates have to work out two probabilities for full marks.

PhysicsAndMathsTutor.com

Question		Answer		Guidance	
		$\mathrm{P}(X \geq 20)=0.0069<1 \%$ So critical region is $\{20\}$ (19 not in CR so) not significant. Conclude that there is not enough evidence to suggest that the new drug is more effective than the old one.	M1 B1* A1* dep E1* dep	For at least one comparison with 1% CAO dep on the two correct probabilities Dep on correct CR Ignore any work on lower critical region	Allow comparison in form of statement 'critical region at 1% level is ...' No marks if CR not justified Condone $X \geq 20, X=20$, oe but not $\mathrm{P}(X \geq 20$, $)$ etc Allow 'accept H_{0} ' or 'reject H_{1} '
1	(iii)	With a 5% significance level rather than a 1% level, the null hypothesis would have been rejected. OR: 'there would be enough evidence to suggest that the new drug is more effective than the old one.' This is because $0.0461<5 \%$	B1* B1* dep [2]	oe	FT their probability from (ii) but NO marks if point probabilities used There must be a sensible attempt to use $\mathrm{P}(X=19)+\mathrm{P}(X=20)$ or must have correct CR. Dep on correct answer of 0.0461 compared with 5% or 0.9539 compared with 95% or correct CR.

2	(i)	(A)	$\begin{aligned} & X \sim \mathrm{~B}(15,0.85) \\ & \mathrm{P}(\text { exactly } 12 \text { germinate })=\binom{15}{12} \times 0.85^{12} \times 0.15^{3} \\ & =0.2184 \end{aligned}$	M1 M1 A1	For $0.85^{12} \times 0.15^{3}$ For $\binom{15}{12} \times p^{12} \times q^{3}$ CAO	
			OR	OR		
			$\begin{aligned} & \text { from tables: } 0.3958-0.1773 \\ & =0.2185 \end{aligned}$	$\begin{aligned} & \text { M2 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	$\begin{aligned} & \text { For } 0.3958-0.1773 \\ & \text { CAO } \end{aligned}$	
2	(i)	(B)	$\mathrm{P}(X<12)=\mathrm{P}(X \leq 11)=0.1773$	M1 A1 [2]	For $\mathrm{P}(X \leq 11)$ or $\mathrm{P}(\leq 11)$ (With no extras) CAO (as final answer) May see alternative method: $0.3958-0.2185=0.1773$ 0.3958 - their wrong answer to part (i) scores M1A0	

Question		Answer	Marks	Guidance	
2	(ii)	Let $p=$ probability of a seed germinating (for the population) $\begin{aligned} & \mathrm{H}_{0}: p=0.85 \\ & \mathrm{H}_{1}: p<0.85 \end{aligned}$ H_{1} has this form because the test is to investigate whether the proportion of seeds which germinate is lower.	B1 B1 B1 E1 [4]	For definition of p For H_{0} For H_{1} Dep on <0.85 used in H_{1} Do not allow just 'Germination rate will be lower' or similar.	See below for additional notes For use of 0.15 as P (not germinating), contact team leader E0 for simply stating H_{1} in words
	(iii)	$\begin{aligned} & \text { Let } X \sim \mathrm{~B}(20,0.85) \\ & \mathrm{P}(X \leq 13)=0.0219 \\ & 0.0219>1 \% \end{aligned}$ So not enough evidence to reject H_{0}. Not significant. Conclude that there is not enough evidence to indicate that the proportion of seeds which have germinated has decreased.	$\begin{gathered} \text { M1* } \\ \text { M1* } \\ \text { dep } \\ \text { A1* } \\ \text { E1* } \\ \text { dep } \end{gathered}$	For probability (provided not as part of finding $\mathrm{P}(X=13)$) Ignore notation For comparison For not significant oe For conclusion in context Must mention decrease, not just change	No further marks if point probs used - $\mathrm{P}(X=13)=0.0160$ DO NOT FT wrong H_{1}, but see extra notes Allow 'accept H_{0} ' or 'reject H_{1} ' Must include 'sufficient evidence' or something similar such as 'to suggest that' ie an element of doubt either in the A or E mark.
		ALTERNATIVE METHOD - follow method above unless some mention of CR seen Critical region method			No marks if CR not justified Condone $\{0,1,2, \ldots, 12\}, \mathrm{X} \leq 12$, oe but not $\mathrm{P}(\mathrm{X} \leq 12)$ etc
		LOWER TAIL $\begin{aligned} & \mathrm{P}(\mathrm{X} \leq 13)=0.0219>1 \% \\ & \mathrm{P}(\mathrm{X} \leq 12)=0.0059<1 \% \end{aligned}$ So critical region is $\{0,1,2,3,4,5,6,7,8,9,10,11,12\}$ 13 not in CR so not significant There is insufficient evidence to indicate that the proportion of seeds which have germinated has decreased.	M1 A1 A1 ${ }^{*}$ E1* dep [4]	For either probability cao dep on at least one correct comparison with 1%	Could get M1A0A1E1 if poor notation for CR Do not allow just ' 13 not in CR' - Must say 'not significant' or accept H_{0} or similar

PhysicsAndMathsTutor.com

Question		Answer	Marks	Guidance	
2	(iv)	$33<35$ So there is sufficient evidence to reject H_{0} Conclude that there is enough evidence to indicate that the proportion of seeds which have germinated has decreased.	M1 A1* E1* dep [3]	For comparison For conclusion in context Must mention decrease, not just change	Allow '33 lies in the CR' Must include 'sufficient evidence' or something similar such as 'to suggest that' ie an element of doubt either in the A or E mark. Do not FT wrong H_{1} : In part (iv) ignore any interchanged H_{0} and H_{1} seen in part (ii) If use a calculator to find $\mathrm{P}(X \leq 33)=0.000661$ and compare with 1% then B 2 for $\mathrm{P}(X \leq 33)=0.000661<0.01$ so reject H_{0} then final E 1 as per scheme.
	(v)	For $n=3, \mathrm{P}(X \leq 0)=0.0034<0.01$ For $n=2, \mathrm{P}(X \leq 0)=0.0225>0.01$ So the least value of n for which the critical region is not empty and thus H_{0} could be rejected is 3 . ALTERNATIVE METHOD using logs $\begin{aligned} & 0.15^{n}<0.01 \\ & n>\log 0.01 / \log 0.15 \\ & n>2.427 \end{aligned}$ Least $n=3$	M1 M1 A1 M1 M1 A1 [3]	For $\mathrm{P}(X \leq 0)=0.0034$ For $\mathrm{P}(X \leq 0)=0.0225$ CAO	Allow 0.003 Condone just ' $n=3$ ' for final A mark dep on both M marks If wrong H_{1} allow max M2A0 if correct probabilities seen.

